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Abstract

A finite element formulation for vibration analysis of rotating thick plates is developed. Mindlin plate theory combined

with second order strain–displacement assumptions are applied for plate modeling. Kane dynamic method is employed for

the derivation of nonlinear governing equations of motion, which include Coriolis effects and the couplings between in-

plane and out of plane deformations. The nonlinear equations of motion are linearized using the conventional quasi static

method and frequency results are obtained. The effects of different parameters including aspect ratio, thickness ratio, hub

radius ratio and rotation speed on dimensionless natural frequencies are investigated and discussed. In addition, the

differences between linear and nonlinear approaches toward in-plane vibration analysis of rotating plates are studied. Tune

speeds are observed for the in-plane vibration frequencies. The results are in good agreement with those of other theories

and experiments.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating structures, like blades, are common elements that are of considerable technical significance in
industrial applications like rotor craft and turbomachinery. The knowledge of natural frequencies and mode
shapes of these structures is essential in the design stages for studying their dynamical behavior on resonance
and for flutter analysis.

The modal characteristics of elastic structures change significantly when the structures undergo overall
motions. For example, centrifugal inertia forces considerably increase transverse bending frequencies of
rotating beams and blades, while Coriolis effects produce vibration couplings between different vibration
modes and generate complex vibration mode shapes.

Rotating blades are commonly modeled as rotating beams. This modeling enables researchers to obtain
accurate modal characteristics for the structure. In early 1920, Southwell and Gough [1] investigated the
vibrations of a rotating beam. Starting from the Rayleigh energy theorem, they suggested a simple algebraic
equation to obtain bending natural frequencies of a rotating beam. This equation, which is often known as
Southwell’s equation, is still being used by many engineers due to its simplicity and accuracy. Southwell’s
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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method was later improved by Schilhansl [2]. He derived a partial differential equation of a rotating beam and
applied to it the Ritz method in order to obtain more accurate coefficients for the Southwell equation. In the
recent years, powerful computational methods available by modern computers make possible for researchers
to employ more accurate hence complicated methods for vibration analysis of rotating beams and blades, in
order to obtain more precise values of natural frequencies and mode shapes (as reported in Refs. [3–11]).

Although beam type structures can be used as a good model for lots of rotating structures like turbine
blades, these models are inaccurate for investigating higher frequencies and for modeling short blades.
Rotating plates are considered as better models for this type of structures [12,13]. In spite of the need, only a
few research papers on the vibration analysis of rotating plates can be found in literature. Dokainish and
Rawtani [14] used a finite element technique to determine the natural frequencies and the mode shapes of a
cantilever plate mounted on a rotating disc and studied the effect of aspect ratio, speed of rotation, disc radius
and setting angle on the natural frequencies. Coriolis and gyroscopic effects were not considered in their
formulation. Karmakar and Sinha [15] introduced a finite element method for vibration analysis of rotating
laminated composite pretwisted cantilever plates and developed a composite shell element for their modeling.
They investigated the effects of pretwist angle, thickness ratio, fiber orientation, aspect ratio, skew angle and
precone angle on the natural frequencies of graphite/epoxy plates. Ramamurti and Kielb [16] used a similar
approach in order to determine the modal characteristics of twisted rotating plates. Using the stretch
deformation terms instead of the conventional axial deformation terms, Yoo and Kim [13,17] and Yoo and
Pierre [18], derived linearized equations of motion for the free vibration analysis of rotating cantilever plates in
a direct way and investigated the effects of the dimensionless parameters on the modal characteristics of
rotating cantilever plates. They showed that the results obtained by using this modeling method are in
reasonable agreement with those obtained by the Southwell method.

Most of the studies introduced in literature are anyway based on the classical thin plate theory, which limits the
application to thin plate structures. This paper is instead aimed to present an accurate model for rotating
moderately thick blades with low aspect ratio. For this purpose, the blade is modeled as a rotating cantilever thick
plate and a finite element formulation method for vibration analysis of this type of structures is presented. Mindlin
[19] assumptions are considered for the thick plate modeling. Mindlin plate theory, or so-called first order shear
deformation plate theory, incorporates the effects of rotary inertia and transverse shear deformations; thus, it
yields more accurate results for vibration analysis of moderately thick plates in comparison with classical plate
theory. According to the knowledge of the authors, Karmakar and Sinha [15] employed first order shear
deformation plate theory, but they studied only the fundamental frequency (i.e. the first bending mode) of
laminated composite plates and they mainly focused on the effect of laminate setting angels on the plate vibrations.
In our work, different kinds of natural frequencies, associated to bending, torsional and in-plane modes, are
investigated. In order to include the coupling effects between stretching and bending deformations in the governing
equations, second order strain–displacement terms are applied. Since the structure is in a overall motion resulted
from rotation around a fixed axis with a hub, which can be considered a special case of rigid body motion, the
nonlinear equations of motion are derived using Kane [20] method, which is in fact known as particularly suitable
for multi-body dynamics involving rigid body motion with elastic mode of distortion. In this way, inertial
accelerations resulted from overall motions of the structure can be taken into account very easily. Coriolis and
gyroscopic effects are included in these nonlinear equations. Then, the equations of motion are linearized around
the system’s stationary state. For this purpose, firstly, the displacement field components are separated into static
and dynamic components and then static displacement components are calculated through equations of motion.
Finally, a dynamic stiffness matrix is introduced using these static displacement components. Linear equations
introduced by means of this quasi-static method do not contain the coupling effects between in-plane and out of
plane deformations any more whereas the coupling effects between in-plane modes are preserved.

After verifying the model by comparison with results (for some special cases) available in the international
literature, the effects of different parameters, as plate aspect ratio, thickness ratio, hub radius ratio and
dimensionless rotation speed, on modal characteristics of the plate are discussed.

The Kane method was also used by Yoo et al. [13,17,18], but in that study they used a curvilinear
coordinates system that simplifies the computational procedure. This method, however, seems not to be easy
to be applied on structures with complex geometries. Therefore, we have preferred to use the classical
coordinate systems, which could be simply applied to more complicated structures in future studies. For this
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reason, in the present work, Cartesian coordinate components are employed in derivation of equations
of motions. Since lots of external system excitations are introduced in the Cartesian coordinates (e.g.
aerodynamic surface pressure introduced by aerodynamic piston theory), the equations of motion presented in
this paper (in both linear and nonlinear form) can be employed in other applications very easily, e.g. for
analysis of linear flutter or aerodynamic limit cycle oscillations of turbine blades.

In addition, these equations of motion can be applied for studying large-amplitude nonlinear vibrations of
rotating plate structures, where the introduction of transverse shear deformations and rotary inertia in the
mathematical modeling is of high importance but they are neglected in the classical plate theory.

It is known from other research works (see Refs. [21,22]) that in-plane vibration nonlinearities which result
in an in-plane dynamic stiffness, have a considerable roll in vibration behavior of rotating structures. Effect of
in-plane vibration nonlinearities is neglected in the other research papers addressed in the previous
paragraphs. In this paper, linear and nonlinear approaches toward in-plane vibration analysis of rotating
plates are employed and compared to each other and some useful and new results are presented.

By applying proper changes, the finite element formulation presented in this paper can be also easily used
for vibration analysis of other rotating structural elements.

According to our survey in the published papers in the subject, this is the first time that a detailed discussion
on in-plane vibration and buckling behavior of rotating plates is presented. It is worth mentioning that in-
plane frequencies can be of great importance for thick and imperfect rotating plates, where in-plane and out-
of-plane vibration couplings can produce more complicated phenomena. Moreover, these kinds of couplings
can be even more important where an imperfect plate structure is rotating in a fluid medium and aeroelastic
couplings, along with couplings between in-plane and out-of-plane vibration modes, affect the plate stability
radically and particular attention should be paid.

2. Governing equations

Fig. 1 shows a rotating cantilever thick plate with length a, width b, thickness h, density r and hub radius R.
The plate is rotating around an axis perpendicular to its surface with constant rotation speed O. A local
Cartesian coordinate system xyz is fixed to the mid plane of the plate where x and y axes are, respectively,
along the plate length and width and z axis is perpendicular to the plate and parallel to the rotation axis.

The angular speed X of the plate is expressed in vector form as reported below:

X ¼ Oe3, (1)

where e3 is the unit vector along z axis.
The displacement vector of a generic point P of the plate in the local coordinates system is denoted by u:

u ¼ ue1 þ ve2 þ we3, (2)

where e1 and e2 are the unit vectors along x and y axis and fixed to the plate and u, v and w are the
displacement field components along the x, y and z axis, respectively.
Fig. 1. Configuration of a rotating thick rectangular plate.
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The velocity and acceleration vectors of the point respect to the global coordinates can be obtained as

vP ¼ ½ _u� ðyþ vÞO�e1 þ ½_vþ ðRþ xþ uÞO�e2 þ we3, (3)

aP ¼ ½ €u� ðRþ xþ uÞO2 � 2O_v�e1 þ ½€v� ðyþ vÞO2 þ 2O _u�e2 þ €we3. (4)

According to the Kane dynamic method [20], the equations of motion for vibration analysis of an elastic
structure are as follows:

F� þ F ¼ 0, (5)

where F* and F are vectors of the generalized inertia forces and the generalized active forces, respectively, and
are defined as

F� ¼

Z
V

r
qvP

q _q
� aP dV ; F ¼

qU

qq
. (6a,b)

In the above equation, _q stands for time derivative of the generalized coordinates vector q and U is the strain
energy of the structure and is obtained as follows:

U ¼
1

2

Z
V

�TCedV , (7)

where C is the material stiffness matrix, as introduced in Appendix A, for an isotropic Mindlin plate and e and
V are vector of strain components and volume of the structure, respectively.

In order to obtain the generalized inertia forces reported in Eq. (6a), the velocity and acceleration vectors
(i.e. vp and ap) must be expressed in terms of the generalized coordinates vector q. According to the first order
shear deformation plate theory, displacement components of any generic point is obtained as shown below:

u ¼ u0 þ zyx ¼ H1d; v ¼ v0 þ zyy ¼ H2d; w ¼ w0 ¼ H3d, (8)

where

H1 ¼ ½1 0 0 z 0�; H2 ¼ ½0 1 0 z 0�; H3 ¼ ½0 0 1 0 0� (9)

and

d ¼ ½u0 v0 w0 yx yy�
T. (10)

In the above equation, u0, v0 and w0 are the displacement field components of the mid-surface of the plate and yx

and yy are the rotations of the plate cross-sections normal to the mid-surface around y and x axes, respectively.
Using Ritz method, the displacement and rotation components of the plate can be approximated as

u0 ¼
XN1

j¼1

XM1

i¼1

aiþðj�1ÞM1
G1ðx; yÞFiðxÞCjðyÞ,

v0 ¼
XN2

j¼1

XM2

i¼1

biþðj�1ÞM2
G2ðx; yÞFiðxÞCjðyÞ,

w0 ¼
XN3

j¼1

XM3

i¼1

ciþðj�1ÞM3
G3ðx; yÞFiðxÞCjðyÞ;

yx ¼
XN4

j¼1

XM4

i¼1

f iþðj�1ÞM4
G4ðx; yÞFiðxÞCjðyÞ,

yy ¼
XN5

j¼1

XM5

i¼1

giþðj�1ÞM5
G5ðx; yÞFiðxÞCjðyÞ, (11)



ARTICLE IN PRESS
S.H. Hashemi et al. / Journal of Sound and Vibration 323 (2009) 366–384370
where coefficients aiþðj�1ÞM1
; . . . and giþðj�1ÞM5

, and are time dependent coefficients, functions Fi(x) and Cj(y)
are arbitrary functions, functions Gi(x,y) are manipulator functions satisfying geometrical boundary
conditions and N1,N2,y,N5 and M1,M2,y,M5 are the number of terms used in the approximations
functions in x and y directions, respectively. For a plate cantilevered in x ¼ 0, the manipulator functions are
obtained as Giðx; yÞ ¼ x; i ¼ 1; 2; . . . ; 5. For convenience, the above assumed displacement functions are
expressed in matrix form as

d ¼

u0

v0

w0

yx

yy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ Nq; y ¼

a

b

c

f

g

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (12)

where N is the matrix of shape functions, q is the generalized coordinates vector and a, b, c, g and h are vectors
which are made of the corresponding time dependent coefficients reported in Eq. (11). Substituting Eq. (12)
into Eq. (10) and differentiating with respect to time, the following equations are obtained:

_u ¼ H1N_q ¼ L1 _q,

_v ¼ H2N_q ¼ L2 _q,

_w ¼ H3N_q ¼ L3 _q. (13)

Differentiating the above equations with respect to _q gives

q _u
q_q
¼ LT

1 ;
q_v
@_q
¼ LT

2 ;
q _w
q_q
¼ LT

3 . (14)

Thus, by substituting the above equations in Eq. (6a), the generalized inertia forces are obtained as shown
below:

F� ¼ Fs1 €qþ Fs2 _qþ Fs3qþ Fs4, (15)

where

Fs1 ¼ r
Z

V

ðLT
1 L1 þ LT

2 L2 þ LT
3 L3ÞdV , (16)

Fs2 ¼ 2rO
Z

V

ð�LT
1 L2 þ LT

2 L2ÞdV , (17)

Fs3 ¼ rO2

Z
V

ð�LT
1 L1 � LT

2 L2ÞdV , (18)

Fs4 ¼ rO2

Z
V

ð�ðRþ xÞLT
1 � yLT

2 ÞdV . (19)

In order to obtain the generalized active forces, the components of strain tensor should be obtained in terms of
generalized coordinates vector. According to the first order shear deformation plate theory, the plate normal
strain in direction normal to the plate (i.e. ezz) is negligible and thus the vector of the strain tensor components,
i.e. e, is obtained as follows:

e ¼ ½�xx �yy �yz �xz �zy�
T. (20)

According to Mindlin plate theory and by adding Von Karman second order strain–displacement terms, the
components of the strain tensor are defined as:

�xx ¼
qu0

qx
þ

1

2

qw0

qx

� �2

þ z
qyx

qx
,
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�yy ¼
qv0

qy
þ

1

2

qw0

qy

� �2

þ z
qyy

qy
,

�yz ¼
qw0

qy
þ yy,

�xz ¼
qw0

qx
þ yx,

�xy ¼
qu0

qy
þ

qv0

qx
þ

qw0

qx

qw0

qy

� �
þ z

qyx

qy
þ

qyy

qx

� �
. (21a)

The full nonlinear version of strain components can be presented as follows:

�xx ¼
qu

qx
þ

1

2

qu

qx

� �2

þ
1

2

qv

qx

� �2

þ
1

2

qw

qx

� �2

,

�yy ¼
qv

qy
þ

1

2

qu

qy

� �2

þ
1

2

qv

qy

� �2

þ
1

2

qw

qy

� �2

,

�yz ¼
qv

qz
þ

qw

qy
þ

qu

qz

qu

qy
þ

qv

qz

qv

qy
þ

qw

qz

qw

qy
,

�xz ¼
qu

qz
þ

qw

qx
þ

qu

qz

qu

qx
þ

qv

qz

qv

qx
þ

qw

qz

qw

qx
,

�xy ¼
qu

qy
þ

qv

qx
þ

qu

qx

qu

qy
þ

qv

qx

qv

qy
þ

qw

qx

qw

qy
, (21b)

where u, v and w are defined by Eq. (8).
By separating the strain components in Eq. (21a) into linear and nonlinear parts, linear and nonlinear strain

vectors can be defined:

e ¼ el þ enl, (22)

where

el ¼

qu0

qx
þ z

qyx

qx
qv0

qy
þ z

qyy

qy

qw0

qy
þ yy

qw0

qx
þ yx

qu0

qy
þ

qv0

qx
þ z

qyx

qy
þ

qyy

qx

� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

; enl ¼

1

2

qw0

qx

� �2

1

2

qw0

qy

� �2

0

0
qw0

qx

qw0

qy

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

. (23)

For the case of fully nonlinear strain components (Eq. (21b)), linear strain vector is the same as introduced in
Eq. (23). But the nonlinear part must be modified by including extra terms.

The linear and nonlinear strain vectors can be rewritten as

el ¼ S1q, (24)

enl ¼ ½Q1q Q2q � � � Q5q�S2q, (25)
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where

Qi ¼ AiN; i ¼ 1; 2; . . . ; 5,

Sj ¼ BjN; j ¼ 1; 2. (26)

In the above equations, Ai and Bj are operator matrices as defined in Appendix B. Eq. (25) can be rewritten as
follows:

enl ¼ DT
1 q, (27)

where

D1 ¼ ½S
T
2Q1q ST

2Q2q � � � ST
2Q5q�. (28)

Substituting Eqs. (24) and (27) in Eq. (22) and, then, the obtained result in Eq. (7) and differentiating with
respect to the generalized coordinates vector q, the following expression is obtained:

qU

qq
¼

Z
V

qeT1
qq

Cel dV þ

Z
V

qeT1
qq

Cen þ
qeTn
qq

Cel

� �
dV þ

Z
V

qeTn
qq

Cen dV . (29)

Differentiating Eqs. (24) and (27) with respect to the generalized coordinates vector q, the following equations
are obtained:

qeT1
qq
¼ ST

1 ;
qeTnl
qq
¼ D1 þD2, (30a,b)

where D1 is defined as in Eq. (28) and D2 is defined as follows:

D2 ¼ ½Q
T
1 S2q QT

2 S2q � � � QT
5 S2q�. (31)

Thus, by substituting Eq. (29) in Eq. (6b) and using Eqs. (30a,b), the generalized active forces are defined:

F ¼
qU

qq
¼ ðF1 þ F2 þ F3Þq, (32)

where

F1 ¼

Z
V

ST
1 CS1 dV ,

F2 ¼

Z
V

ðST
1 CD

T
1 þ ðD1 þD2ÞCS1ÞdV ,

F3 ¼

Z
V

ðD1 þD2ÞCD
T
1 dV . (33)

It should be noticed that in the above equations F2 and F3 are nonlinear stiffness matrices which are dependent
on the generalized coordinates vector q.

By using the components of Eq. (5) reported in Eqs. (15) and (32), the nonlinear equations of motion for
free vibration of the rotating plate can be written as shown below:

M€qþ CD_qþ ðKþ Kq þ KqqÞqþ Fs4 ¼ 0, (34)

where

M ¼ Fs1; CD ¼ Fs2; K ¼ Fs3 þ F1; Kq ¼ F2; Kqq ¼ F3. (35)

In the above equation, Kq and Kqq are nonlinear stiffness matrices which are dependent on the generalized
coordinates vector q.

For free vibration analysis of non-rotating thick plates, one can simply substitute O ¼ 0 in Eqs. (17)–(19)
and omit the nonlinear stiffness matrices. Thus, the equations of motion for this case are obtained as

M€qþ Kq ¼ 0, (36)
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where

M ¼ Fs1; K ¼ F1. (37)

Assuming the generalized coordinates vector to be harmonic (q ¼ qeiot), Eq. (36) reduces to a conventional
eigenvalue problem which will yields natural frequencies and mode shapes of a non-rotating thick plate.
3. Linearization of the governing equation

At this stage, in order to linearize Eq. (34), the generalized coordinates vector is separated into static and
dynamic components as shown below:

q ¼ qs þ qd, (38)

where qs and qd represent static and dynamic parts of the generalized coordinates vector, respectively. Since
Eq. (34) is a general equation of motion, it should be satisfied by substituting q ¼ qs for static analysis,
obtaining:

ðKþ Kqs
þ Kqsqs

Þqs þ Fs4 ¼ 0. (39)

It should be mentioned that for the case of linear in-plane vibrations, qs only includes in-plane non-zero terms,
since the plate just undergoes in-plane static deflections resulted from centrifugal inertia forces
(ds ¼ Nqs ¼ ½u0s v0s 0 0 0�T). Using Eqs. (28), (31), (33) and (35) and by means of the operator matrices
Ai and Bj introduced in Appendix B, one can simply show that for the case of linear in-plane vibrations
(Eq. (21a)):

Kqs
qs ¼ 0; Kqsqs

qs ¼ 0. (40)

Thus, Eq. (39) reduces to a set of linear algebraic equations and qs can be defined as follows:

qs ¼ �K
�1Fs4. (41a)

For the case of full nonlinear strain components (Eq. (21b)):

qs ¼ �ðKþ Kqs
þ Kqsqs

Þ
�1Fs4. (41b)

Substituting Eq. (41) into Eq. (38) and the obtained result into Eq. (34), the following governing equation is
defined:

M€qd þ CD_qd þ Kqd þ Kqd
qs þ KqS

qd þ KqdqS
qs þ KqSqd

qs þ KqSqS
qd þOðq2dÞ þOðq3dÞ ¼ 0. (42)

Above equation can be shortened by the following definition:

Kqd
qs þ KqS

qd þ KqdqS
qs þ KqSqd

qs þ KqSqS
qd ¼ K0qd, (43)

where K0 is dynamic stiffness matrix. In Eq. (43) each term is calculated by using the corresponding
displacement vector. For example Kqd is defined as

Kqd
¼

Z
V

ðST
1 CD

T
1qd
þ ðD1qd þD2qdÞCS1ÞdV , (44)

where

D1qd
¼ ½ST

2Q1qd ST
2Q2qd � � � ST

2Q5qd�,

D2qd
¼ ½QT

1 S2qd QT
2 S2qd � � � QT

5 S2qd�. (45)

Finally, by substituting Eq. (43) into Eq. (42) and eliminating the nonlinear terms, the following linear
governing equation is defined for rotating thick plates:

M€qd þ CD_qd þ ðKþ K0Þqd ¼ 0. (46)
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It is worth mentioning that in Eq. (43), for the case of linear in-plane vibrations, all terms in the left side of the
equation are zero, except the first term. For the case of nonlinear in-plane vibrations, three hypotheses can be
assigned for definition of static displacements, namely:
I.
1Si
Small static displacements: in Eqs. (41b) and (43) nonlinear terms of qs are neglected.

II.
 Moderate static displacements: cubic nonlinear terms of Eq. (41b) and nonlinear terms of Eq. (43) are

neglected.

III.
 Large static displacements: Eqs. (41b) and (43) are solved nonlinearly.
4. Numerical results

In order to determine the modal characteristics of rotating and non-rotating plates, the governing equation
of the system (Eq. (36)) is firstly transformed into a set of first order differential equations:

a_rþ br ¼ 0, (47)

where r is the vector of the system states, defined as

r ¼
_qd
qd

( )
(48)

and a and b are given by

a ¼
M 0

0 I

� �
; b ¼

CD Kþ K0

�I 0

� �
. (49)

Subsequently, the vector of the system states is assumed to be harmonic (r ¼ reiot) and the governing equation
(Eq. (47)) is reduced to a conventional eigenvalue problem. The characteristic matrices M, CD, K and K0 are
calculated through exact analytical integrations using Mathematica software. In Eq. (49) I represents the
identity matrix.

In the present work, power series are used as arbitrary functions (FiðxÞ ¼ xi�1 and CjðyÞ ¼ yj�1). For
convenience, the approximation series in different directions are taken of the same order (M1 ¼M2 ¼ � � � ¼

M5 ¼M and N1 ¼ N2 ¼ � � � ¼ N5 ¼ N). In all presented tables and figures, d, Z, s, o and g denote aspect
ratio, thickness ratio, hub radius ratio, dimensionless natural frequency and dimensionless rotation speed,
respectively, and are defined as shown below:

d ¼ a=b; Z ¼ h=a; s ¼ R=a; o ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; g ¼ OT , (50)

where o and D are, respectively, a generic natural frequency and the flexural rigidity of the plate and

D ¼ Eh3=ð12ð1� n2ÞÞ; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rha4=D

q
, (51)

where E and n are Young’s modulus of elasticity and Poisson’s ratio, respectively.
For validating the governing equation obtained for non-rotating plates (i.e. Eq. (36)), a convergence study

has been performed.
Table 1 presents the case of the dimensionless natural frequencies of a thick non-rotating rectangular plate

with SCSC1 boundary conditions and dimensionless ratios d ¼ 0.5 and Z ¼ 0.15, for different values of M and N.
In addition, the results are compared with exact solutions presented by Hashemi and Arsanjani [23]. It can be
observed from the table that the nine first natural frequencies of the plate converge to the exact values [23] with
a great precision in the case of assumed modes number M�N ¼ 9� 9. As it is expected from the
Rayleigh–Ritz method, the results obtained by the present method for natural frequencies converge to the
exact solutions from upper frequency bound as the number of assumed modes in the displacement assumption
functions (i.e. M and N) increases.
mply supported-clamped–simply supported-clamped.
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Table 1

Comparison of dimensionless natural frequencies obtained by the present method (for different values of N and M) and by the exact

method [21] for a non-rotating thick plate with SCSC boundary conditions and dimensionless ratios d ¼ 0.5, Z ¼ 0.15.

Number of modes (M�N) Exact [21] Error percent

4� 4 5� 5 6� 6 7� 7 8� 8 9� 9

o1 12.8672 12.8481 12.8474 12.8456 12.8456 12.8450 12.8449 0.00

o2 21.2813 21.2564 21.1906 21.1893 21.1861 21.1861 21.1853 0.00

o3 35.2198 33.3313 33.0074 32.8609 32.8519 32.8486 32.8480 0.00

o4 37.0489 36.9953 36.8308 36.8269 36.8241 36.8238 36.8226 0.00

o5 50.1377 43.6383 43.5602 43.2461 43.2427 43.2316 43.2289 0.01

o6 56.5685 50.7195 48.4431 47.2623 46.9989 46.9491 46.9422 0.01

o7 66.1986 56.5685 53.7896 53.6240 53.0529 53.0474 53.0168 0.06

o8 76.1577 71.5357 69.3059 66.2273 63.4926 63.0439 62.8423 0.32

o9 88.8387 76.1577 71.4664 67.0258 66.3783 65.5035 65.4110 0.14

The error percent is calculated between the case of M�N ¼ 9� 9 and the exact method [21].

Table 2

Comparison of dimensionless natural frequencies obtained by the present method (for M�N ¼ 9� 9) and by the exact method [21] for a

non-rotating thick plate with SSSS boundary conditions.

d ¼ 1, Z ¼ 0.1 d ¼ 1, Z ¼ 0.2 d ¼ 0.5, Z ¼ 0.1

Present work Exact [21] Error percent Present work Exact [21] Error percent Present work Exact [21] Error percent

o1 19.0840 19.0840 0.00 17.5055 17.5055 0.00 12.0752 12.0752 0.00

o2 45.5845 45.5845 0.00 38.3847 38.3847 0.00 19.0840 19.0840 0.00

o3 45.5845 45.5845 0.00 38.3847 38.3847 0.00 30.4080 30.4080 0.00

o4 70.0219 70.0219 0.00 55.5860 55.5860 0.00 39.1713 39.1713 0.00

o5 85.3655 85.3654 0.00 65.7265 65.7193 0.01 45.5846 45.5845 0.00

o6 85.3655 85.3654 0.00 65.7265 65.7193 0.01 45.6264 45.5845 0.09

o7 107.2131 107.1775 0.03 79.4805 79.4758 0.01 56.0104 55.9920 0.03

o8 107.2131 107.1775 0.03 79.4805 79.4758 0.01 64.2916 64.0823 0.33

o9 134.4826 134.3586 0.09 95.8660 95.8088 0.06 70.1041 70.0219 0.12
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The dimensionless natural frequencies for different geometrical characteristics of a non-rotating thick plate
with SSSS2 boundary conditions are compared with exact values [23] in Table 2. The comparison results
presented in Tables 1 and 2 attest the validity of the governing equation (Eq. (34)) for non-rotating plates.

Table 3 presents a convergence study for dimensionless natural frequencies of a thick rotating cantilever
plate with thickness ratio Z ¼ 0.1, aspect ratio d ¼ 3, hub radius ratio s ¼ 0 and dimensionless rotation speed
g ¼ 10. It can be observed that, for the case of M�N ¼ 9� 9, a good convergence for the ten lowest
frequencies of the structure is achieved.

In Tables 4 and 5, the five lowest natural frequencies obtained on the basis of the present method are
compared with those obtained by Yoo and Kim [13] for a cantilever rotating plate with aspect ratio d ¼ 1, two
different hub radius ratios s ¼ 0 and 1 and two different rotation speeds g ¼ 1 and 2. For this comparison,
thickness ratio Z ¼ 0.01 and the hypothesis of linear in-plane motions are used for modeling thin plates.
A good agreement between the two methods can be observed in the comparison results, since the differences
are less than 1% for all cases. The error percentages with minus sign in Tables 4 and 5 show that the results
obtained by the present method are always lower than the results obtained by Yoo and Kim [13]. It is in fact
well known from the Mindlin plate theory that considering lateral shear deformations in the plate modeling
results in a more flexible structure and leads the frequency results towards slightly lower values with respect to
2Simply supported in all edges.
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Table 3

Convergence of dimensionless natural frequencies of a thick rotating cantilever rectangular plate (d ¼ 3, s ¼ 0, g ¼ 10, Z ¼ 0.1).

Number of modes (M�N) o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

3� 3 3.302 11.277 23.246 32.445 47.064 55.876 69.789 85.632 131.241 136.089

4� 4 2.881 11.249 22.623 32.432 46.490 55.715 62.386 68.136 107.986 124.651

5� 5 2.744 11.243 22.436 32.374 45.613 55.562 61.401 67.728 106.132 107.159

6� 6 2.674 11.242 22.362 32.352 45.484 55.533 61.113 67.340 103.987 104.136

7� 7 2.636 11.241 22.343 32.348 45.441 55.519 60.914 67.285 103.648 103.737

8� 8 2.615 11.240 22.335 32.344 45.408 55.508 60.873 67.265 103.304 103.665

9� 9 2.602 11.239 22.331 32.341 45.390 55.500 60.865 67.258 103.252 103.609

Table 4

Comparison of the five lowest natural frequencies obtained by the present method and by Yoo and Kim [13] (d ¼ 1, s ¼ 0).

g ¼ 1 g ¼ 2

Present method Yoo and Kim [13] Error percent Present method Yoo and Kim [13] Error percent

o1 3.6437 3.6528 �0.2493 4.1051 4.11312 �0.1951

o2 8.6289 8.6459 �0.1963 8.9790 9.00317 �0.2690

o3 21.4378 21.53372 �0.4453 21.8630 21.96654 �0.4713

o4 27.2592 27.38478 �0.4587 27.4993 27.62312 �0.4483

o5 31.0695 31.21853 �0.4775 31.4258 31.58544 �0.5055

A thickness ratio Z ¼ 0.01 is used for modeling thin plates.

Table 5

Comparison of the five lowest natural frequencies obtained by the present method and by Yoo and Kim [13] (d ¼ 1, s ¼ 1).

g ¼ 1 g ¼ 2

Present method Yoo and Kim [13] Error percent Present method Yoo and Kim [13] Error percent

o1 3.8532 3.86185 �0.2241 4.8069 4.81385 �0.1441

o2 8.7157 8.73585 �0.2302 9.3079 9.34355 �0.3814

o3 21.6205 21.71968 �0.4567 22.5615 22.67981 �0.5217

o4 27.3009 27.42572 �0.4551 27.6713 27.79012 �0.4277

o5 31.2101 31.3624 �0.4856 31.9771 32.14933 �0.5358

A thickness ratio Z ¼ 0.01 is used for modeling thin plates.
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the ones obtained by the classical plate theory (Kirchhoff theory). In other words, the classical plate theory
overestimates the structural dynamic characteristics.

Fig. 2 shows the variations of the three lowest dimensionless bending frequencies, the two lowest
dimensionless torsional frequencies and the first in-plane dimensionless frequency of a non-rotating plate
versus the plate aspect ratio. Results are plotted for different thickness ratios. As it can be observed in the
figure, in all cases, bending frequencies remain constant, torsional frequencies increase and in-plane
frequencies decrease as the aspect ratio increases. The variation of the torsional frequencies versus aspect ratio
seems to be linear for thin plates (Z ¼ 0.01), whereas such a trend is not confirmed for thick plates (e.g. Z ¼ 0.1
and 0.15). In addition, it can be observed that all the frequencies decrease as the thickness ratio increases and
that, for higher thickness ratios, the in-plane frequencies have a more significant shift towards lower values
with respect to bending and torsional frequencies.
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Fig. 2. Variations of the dimensionless natural frequencies of non-rotating plates versus aspect ratio (d) for different values of the

thickness ratio (Z); — bending modes, - - torsional modes, and ....... in-plane modes.
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Fig. 3 reports, as an example, the mode shapes corresponding to third bending mode, second torsional mode
and first in-plane mode of a non-rotating plate with aspect ratios d ¼ 1.5 and 4, respectively.

Fig. 4 shows the variations of the lowest dimensionless natural frequencies of a rotating plate (g ¼ 1) versus
thickness ratio for different aspect ratios. It can be clearly observed from this figure (as mentioned before) that
all natural frequencies decrease as thickness ratio increases, but this trend is more significant for in-plane
vibration modes. This phenomenon appears for all the values of thickness ratio. It can be also observed that,
for increasing values of the aspect ratio d, the in-plane frequencies progressively move towards lower
frequency bands with respect to bending and torsional ones.

The variations of the dimensionless natural frequencies versus dimensionless rotation speed for different
thickness ratios are plotted in Fig. 5. It can be observed from the figure that the out-of-plane frequencies
increase as the rotation speed increases, whereas in-plane frequencies decrease and plate buckles in the higher
rotation speeds (gb). It is worth mentioning that buckling of in-plane modes is due to Coriolis effects. From the
figure it can be seen that the buckling dimensionless speed gb depends on thickness ratio and decreases as
the thickness ratio increases. It can be also realized from the figure that there are some critical speeds in which
the plate rotation speed becomes equal to in-plane vibration frequency (points A and B in Fig. 5, where the in-
plane frequencies loci cross line g ¼ o). These rotations speeds, or so called tune speeds, should be avoided in
design procedure, since unbalances in the rotor system can lead the structure to resonance at these speeds.
According to the figure, tune speeds decrease as the plate thickness ratio increases. Fig. 5 also shows the
eigenvalue loci veering for out-of-plane frequencies and the eigenvalue loci crossing between out-of-plane
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Fig. 3. Mode shapes corresponding to third bending mode (cases (a) and (b)), second tortional mode (cases (c) and (d)) and first in-plane

mode (cases (e) and (f)) of a non-rotating plate with aspect ratio d ¼ 1.5 and 4, respectively.
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frequencies and also between in-plane and out-of-plane frequencies. A detailed discussion about these
phenomena can be found in Ref. [13].

In a study about in-plane vibration of rotating disks, Deshpande and Mote [21] showed that in-plane
buckling of rotating structures, which is reported in different previous studies, is due to linear analysis of
in-plane vibrations and is not correct. In fact in order to have correct prediction of in-plane vibration
frequencies of rotating structures, it is essential to introduce second order derivatives of in-plane displacement
components in to the structure strain components (Eq. (21b)), which results in an in-plane dynamic stiffness
for the structure.

Fig. 6 illustrates in-plane vibration frequencies of a rotating plate with dimensionless ratios s ¼ 1, d ¼ 1
and Z ¼ 0.15, predicted by the linear and nonlinear in-plane vibration analysis. In this figure, the hypothesis
of small static displacements is used for the nonlinear case. It is clearly observed from the figure that
for the case of nonlinear analysis of the in-plane vibrations, the buckling phenomenon is removed from
the results in the studied range of rotation speed as well as tune speeds. In Fig. 7 a comparison between
in-plane and out-of-plane vibration frequencies of the rotating plate predicted by different static dis-
placement assumptions is presented. This figure demonstrates a significant difference between predicted results
for high values of rotation speeds, whereas for the case of small rotation velocities, the predicted results are in
a good agreement. In addition, Fig. 7 suggests that nonlinear analysis of in-plane vibrations of the rotating
plate results in a frequency modification for the out-of-plane vibration frequencies, since the static
displacement predicted in this method is different from the one reported by the linear in-plane vibrations
analysis.
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Fig. 4. Variations of the dimensionless natural frequencies of a rotating plate (g ¼ 1) versus thickness ratio (Z) for different values of the
aspect ratio (d); — bending modes, - - torsional modes and ....... in-plane modes.
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Fig. 8a shows the variations of the dimensionless natural frequencies versus hub radius ratio for a rotating
plate with rotation speed g ¼ 2 and thickness ratio Z ¼ 0.1. The hypothesis of linear in-plane vibrations is used
in this figure. It can be seen from the figure that, the out-of-plane frequencies (i.e. bending and torsional
frequencies) increase as the hub radius increases, while the in-plane modes remain constant. The frequency
result for the same plate and with the assumption of nonlinear in-plane vibrations with small moderate static
displacements is presented in Fig. 8b. This figure shows the same results for the out-of-plane frequencies but a
slot change in in-plane frequencies is observed in the figure. Since the rotation speed is small, the rate of changes
in the in-plane frequencies is negligible. Fig. 8c presents the in-plane and out-of-plane frequencies of the plate for
a higher value of rotation speed, still with the assumption of nonlinear in-plane vibrations with small moderate
static displacements. For this case, one can see that the in-plane frequencies change more significantly.

Fig. 9 shows the in-plane vibration frequencies of a rotating plate with dimensionless ratios s ¼ 0, d ¼ 1 and
Z ¼ 0.15, predicted by nonlinear in-plane theory. The hypothesis of large static displacements is used in this
figure. As it can be observed from the figure, the first in-plane vibration frequency of the plate reduces as the
rotation speed increases. This frequency reduction ends to in-plane buckling phenomenon for fairly high
rotation speeds. However, for such high rotation velocities, higher order nonlinear strain components must be
used in Eq. (21b) since the static displacements would be considerably large. Practically, the rotating structure
falls in static failure due to high in-plane stresses before attaining such high rotation speeds. Fig. 9 shows a
tune speed for the rotating plate (point A) that must be avoided as described before.

5. Conclusions

A finite element method for vibration analysis of rotating thick plates is presented. Nonlinear equations of
motion which contain Coriolis effects are obtained and then linearized using the conventional quasi-static
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Fig. 6. In-plane vibration frequencies of a rotating plate with dimensionless ratios s ¼ 0, d ¼ 1, Z ¼ 0.15; — nonlinear in-plane vibrations

and ....... linear in-plane vibrations.

Fig. 5. Variations of the dimensionless natural frequencies versus dimensionless rotation speed g; — out-plane modes, - - in-plane modes

and ....... g ¼ o.
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method. Out-of-plane and in-plane dimensionless natural frequencies of rotating plates are determined and
discussed for different geometrical and dynamic parameters. The importance of nonlinear analysis of in-plane
vibration behavior of rotating structures specially in high values of rotation speeds is demonstrated.
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Fig. 7. In-plane (oin) and out-of-plane (oo) vibration frequencies of a rotating plate with dimensionless ratios s ¼ 1, d ¼ 1 and Z ¼ 0.15;

— small static displacements, ....... moderate static displacements and - - large static displacements.

Fig. 8. Variations of the dimensionless natural frequencies versus hub radius ratiospredicted by linear in-plane vibration analysis (a) and

by nonlinear in-plane vibration analysis with small moderate static displacements (b, c); — out-plane modes and - - in-plane modes.
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In addition, tune speeds are observed for in-plane frequencies where plate may fall in resonance in case of
unbalanced rotor system. Furthermore loci crossing phenomenon is detected between in-plane and out-
of-plane frequencies which are coupled through nonlinear terms in the governing equations.
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Fig. 9. In-plane vibration frequencies and tune speed of a rotating plate with dimensionless ratios s ¼ 0, d ¼ 1 and Z ¼ 0.15.
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Appendix A. Matrix of elastic coefficients

The matrix of elastic coefficients for isotropic Mindlin plates is defined as

C ¼

E

1� n2
nE

1� n2
0 0 0

nE

1� n2
E

1� n2
0 0 0

0 0
k2E

2ð1þ nÞ
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2ð1þ nÞ
0

0 0 0 0
k2E

2ð1þ nÞ

2
66666666666666664

3
77777777777777775

, (A.1)

where k is the Mindlin shear correction factor and it is equal to (0.8667)0.5.
Appendix B. Operator matrices

The operator matrices introduced in Eq. (26) are defined as

B1 ¼
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A1 ¼
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In the case of full nonlinear strain components:
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